Skip to main content

Coastal Systems: The Dynamic Interface Between Land and Sea

  • Chapter
  • First Online:
Research Directions, Challenges and Achievements of Modern Geography

Abstract

Coasts are some of the most dynamic environments on Earth. Their rich resources and appealing scenery mean that many are heavily populated. Coastlines and the adjacent marine zones are threatened by direct natural and anthropogenic stresses as well as land-use and land-cover changes in the catchments. Coasts need to be viewed as interactive systems, including both human and physical components. The sustainability of coastal environments depends on understanding these interactions. The pressures that intense human use brings are exacerbated by climate change, particularly observed and anticipated sea-level rise, which threatens further erosion and inundation. Ongoing studies, many utilising a range of modern sophisticated technologies, are focusing on discriminating natural patterns of change from trends that result from the impact of human activities. Methodological advances include interdisciplinary and transdisciplinary initiatives involving the application of remote sensing to coastal areas and the development of citizen science projects that include coastal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agardy T, Alder J (2005) Coastal systems, ecosystems and human well-being: current state and trends. Island Press, Washington DC, pp 513–549

    Google Scholar 

  • Almeida LP, Oliveira IS, Lyra R, Dazzi RLS, Martins VG, Klein AHF (2021) Coastal analyst system from space imagery engine (CASSIE): shoreline management module. Environ Model Softw 140:105033

    Article  Google Scholar 

  • Amores A, Marcos M, Carrió DS, Gómez-Pujol L (2020) Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat Hazard 20:1955–1968

    Article  Google Scholar 

  • Anthony EJ, Marriner N, Morhange C (2014) Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase? Earth Sci Rev 139:336–361

    Article  Google Scholar 

  • Atkinson AL, Baldlock TE, Birren F, Callaghan DP, Nielsen P, Beuzen T, Turner I, Blenkinsopp CE, Ranasinghe R (2018) Laboratory investigation of the Bruun rule and beach response to sea level rise. Coast Eng 136:183–202

    Article  Google Scholar 

  • Barragan JM, de Andres M (2015) Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast Manag 114:11–20

    Article  Google Scholar 

  • Bertacchi A (2017) Dune habitats of the Migliarino-San Rossore–Massaciuccoli regional park (Tuscany–Italy). J Maps 13:322–331

    Article  Google Scholar 

  • Bishop-Taylor R, Nanson R, Sagar S, Lymburner L (2021) Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens Environ 267:112734

    Article  Google Scholar 

  • Borsje BW, de Vries S, Janssen SK, Luijendijk AP, Vuik V (2017) Building with nature as coastal protection strategy in the Netherlands. In: Bilkovic DM, Mitchell MM, La Peyre MK, Toft JD (eds) Living shorelines. CRC Press, New York, pp 137–156

    Chapter  Google Scholar 

  • Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77

    Article  Google Scholar 

  • Brown S, Nicholls RJ, Hanson S, Brundit G, Dearing JA, Dickson ME et al (2014) Shifting perspectives on coastal impacts and adaptation. Nat Clim Chang 4:752–755

    Article  Google Scholar 

  • Brunetta R, Duo E, Ciavola P (2021) Evaluating short-term tidal flat evolution through UAV surveys: a case study in the Po Delta (Italy). Remote Sens 13:2322

    Article  Google Scholar 

  • Bruun P (1988) The Bruun rule of erosion by sea-level rise: a discussion on large-scale two-and three-dimensional usages. J Coast Res 4:627–648

    Google Scholar 

  • Buddemeier RW, Smith SV, Swaney DP, Crossland CJ, Maxwell BA (2008) Coastal typology: an integrative “neutral” technique for coastal zone characterization and analysis. Estuar Coast Shelf Sci 77:197–205

    Article  Google Scholar 

  • Bukvic A, Rohat G, Apostsos A, de Sherbinin A (2020) A systematic review of coastal vulnerability mapping. Sustainability 12:2822

    Article  Google Scholar 

  • Bunting P, Rosenqvist A, Lucas RM, Rebelo LM, Hilarides L, Thomas N et al (2018) The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens 10:1669

    Article  Google Scholar 

  • Cabezas-Rabadán C, Pardo-Pascual JE, Palomar-Vázquez J, Fernández-Sarría A (2019) Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Sci Total Environ 691:216–231

    Google Scholar 

  • Casella E, Rovere A, Pedroncini A, Stark CP, Casella M, Ferrari M, Firpo M (2016) Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar Lett 36:151–163

    Article  Google Scholar 

  • Casella E, Drechsel J, Winter C, Benninghoff M, Rovere A (2020) Accuracy of sand beach topography surveying by drones and photogrammetry. Geo-Mar Lett 40:255–268

    Article  Google Scholar 

  • Cheong S-M (2008) A new direction in coastal management. Mar Policy 32:1090–1093

    Article  Google Scholar 

  • Coco G, Murray AB (2007) Patterns in the sand: from forcing templates to self-organization. Geomorphology 91:271–290

    Article  Google Scholar 

  • Collie JS, Adamowicz WL, Beck MW, Craig B, Essington TE, Fluharty D, Rice J, Sanchirico JN (2013) Marine spatial planning in practice. Estuar Coast Shelf Sci 117:1–11

    Article  Google Scholar 

  • Cooper JAG, Anfuso G, Del Rio L (2009) Bad beach management: European perspectives. Geol Soc Am Spec Pap 460:169–179

    Google Scholar 

  • Cooper JAG, Masselink G, Coco G, Short AD, Castelle B, Rogers K et al (2020) Sandy beaches can survive sea-level rise. Nat Clim Chang 10:993–995

    Article  Google Scholar 

  • Cotton CA (1954) Deductive morphology and genetic classification of coasts. Sci Mon 78:163–181

    Google Scholar 

  • Danielsen F, Serensen MK, Olwig MF, Selvam V, Parish F, Burgess ND, Hiraishi T, Karunagaran VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005) The Asian Tsunami: a protective role for coastal vegetation. Science 310:643

    Article  Google Scholar 

  • Davidson-Arnott RG, Bauer BO (2021) Controls on the geomorphic response of beach-dune systems to water level rise. J Great Lakes Res 47:1594–1612

    Article  Google Scholar 

  • Davidson-Arnott R, Bauer B, Houser C (2019) Introduction to coastal processes and geomorphology, 2nd, edn. Cambridge University Press

    Google Scholar 

  • Davies JL (1972) Geographical variation in coastal development. Longman, London

    Google Scholar 

  • Davies JL (1974) The coastal sediment compartment. Aust Geogr Stud 12:139–151

    Article  Google Scholar 

  • Davis WM (1899) The geographical cycle. Geogr J 14:481–504

    Article  Google Scholar 

  • Do ATK, de Vres S, Stive MJF (2019) The estimation and evaluation of shoreline locations, shoreline-change rates, and coastal volume changes derived from Landsat images. J Coast Res 35:56–71

    Article  Google Scholar 

  • Doherty Y, Harley MD, Vos K, Splinter KD (2022) A python toolkit to monitor sandy shoreline change using high-resolution shoreline change using planetscope cubesats. Environ Model Softw 157:105512

    Article  Google Scholar 

  • Doody JP (2013) Coastal squeeze and managed realignment in southeast England, does it tell us anything about the future? Ocean Coast Manag 79:34–41

    Article  Google Scholar 

  • EEA (European Environment Agency) (2006) Changing faces of Europe’s coastal areas, EEA Report No. 6/2006. EEA, Copenhagen

    Google Scholar 

  • Esteves LS (2014) Managed realignment: a viable long-term coastal management strategy? Springer briefs in environmental science. Springer, Dordrecht, 139 pp. ISBN: 978-94-017-9028-4

    Google Scholar 

  • Evelpidou N, Petropoulos A, Karkani A, Saitis G (2021) Evidence of coastal changes in the West Coast of Naxos Island, Cyclades, Greece. J Mar Sci Eng 9:1427

    Article  Google Scholar 

  • Fagherazzi S, Overeem I (2007) Models of deltaic and inner continental shelf landform evolution. Annu Rev Earth Planet Sci 35:685–715

    Article  Google Scholar 

  • Ferrer-Valero N, Hernández-Calvento L, Hernández-Cordero AI (2017) Human impacts quantification on the coastal landforms of Gran Canaria Island (Canary Islands). Geomorphology 286:58–67

    Google Scholar 

  • Ferrer-Valero N, Hernández-Calvento L, Hernández-Cordero AI (2019) Insights of long-term geomorphological evolution of coastal landscapes in hot-spot oceanic islands. Earth Surf Proc Land 44:565–580

    Article  Google Scholar 

  • Finkl CW (2004) Coastal classification: systematic approaches to consider in the development of a comprehensive scheme. J Coast Res 20:166–213

    Article  Google Scholar 

  • Fitton JM, Hansom JD, Rennie AF (2018) A method for modelling coastal erosion risk: the example of Scotland. Nat Hazards 9:931–961

    Article  Google Scholar 

  • Gallop SL, Kennedy DM, Loureiro C, Naylor LA, Muñoz-Pérez JJ, Jackson DWT et al (2020) Geologically controlled sandy beaches: their geomorphology, morphodynamics and classification. Sci Total Environ 731:139123

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhiu Z, Singh A, Loveland T et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Gornitz V, Kanciruk P (1989) Assessment of global coastal hazards from sea-level rise. In: Proceedings of the 6th symposium on coastal and ocean management, ASCE, July 11–14 1989, Charleston, SC, pp 1345–1359

    Google Scholar 

  • Green DR, Hagon JJ (2017) Coastal data collection: applying geospatial technologies to coastal studies. In: Green DR (ed) Marine and coastal resource management: principles and practice. Earthscan, pp 103–120

    Google Scholar 

  • Green DR, Hagon JJ, Gómez C, Gregory BJ (2019) Using low-cost UAVs for environmental monitoring, mapping, and modelling: examples from the coastal zone. In: Krishnamurthy R, Jonathan M, Srinivasalu S, Glaeser B (eds) Coastal management: global challenges and innovations. Elsevier, pp 465–501

    Google Scholar 

  • Green DR, Mauquoy D, Hagon JJ (2020) Monitoring, mapping, and modelling saltmarsh with UAVs. In: Green DR, Gregory BJ, Karachok AR (eds) Unmmaned aerial remote sensing: UAS for environmental applications. CRC Press, pp 129–136

    Chapter  Google Scholar 

  • Guilcher A (1958) Coastal and submarine morphology. Methuen, London

    Google Scholar 

  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25:729–738

    Article  Google Scholar 

  • Hamon-Kerivel K, Cooper JAG, Jackson D, Sedrati M, Pintado EG (2020) Shoreface mesoscale morphodynamics: a review. Earth Sci Rev 209:103330

    Article  Google Scholar 

  • Hamylton SM (2017) Spatial analysis of coastal environments. Cambridge University Press

    Book  Google Scholar 

  • Harley MD, Kinsela MA, Sanchez-Garcia E, Vos K (2019) Shoreline change mapping using crowd-sourced smartphone images. Coast Eng 150:175–189

    Article  Google Scholar 

  • Hawker L, Uhe P, Paulo L, Sosa J, Savage J, Sampson C, Neal J (2022) A 30 m global map of elevation with forests and buildings removed. Environ Res Lett 17:024016

    Article  Google Scholar 

  • Hughes TP, Kerry JT, Connolly SR, Alvarez-Romero JG, Eakin CM, Heron SF, Gonzalez MA, Monteghetti J (2021) Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr Biol 31:1–7

    Article  Google Scholar 

  • Imran MA, Kimura S, Nakashima K, Evelpidou N, Kawasaki S (2019) Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method. Appl Sci 9:4462

    Article  Google Scholar 

  • IPCC, SPM (2021) Summary for policymakers. In: Masson-Delmotte V et al (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY. https://doi.org/10.1017/9781009157896.001

  • Jackson DWT, Short AD (2020) Sandy beach morphodynamics. Elsevier, Amsterdam

    Google Scholar 

  • Jackson DWT, Costas S, Gonzalez-Villanueva R, Cooper JAG (2019) A global ‘greening’ of coastal dunes: an integrated consequence of climate change? Glob Planet Change 182:103026

    Article  Google Scholar 

  • Jayathilake DRM, Costello MJ (2018) A modelled global distribution of the seagrass biome. Biol Cons 226:120–126

    Article  Google Scholar 

  • Johnson DW (1919) Shore processes and shoreline development. Prentice Hall, New York

    Google Scholar 

  • Johnson DW (1925) The New England—Acadian shoreline. Wiley, New York

    Google Scholar 

  • Kantamaneni K, Rice L, Du X, Allali B, Yenneti K (2022) Are current UK coastal defences good enough for tomorrow? An assessment of vulnerability to coastal erosion. Coast Manag 50:142–159

    Article  Google Scholar 

  • Khakzad S, Pieters M, Van Balen K (2015) Coastal cultural heritage: a resource to be included in integrated coastal zone management. Ocean Coast Manag 118:110–128

    Article  Google Scholar 

  • King CAM (1959) Beaches and coasts. Edward Arnold Ltd., London

    Google Scholar 

  • Kirezci E, Young IR, Ranasinghe R, Muis S, Nicholls RJ, Lincke D, Hinkel J (2020) Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci Rep 10:11629

    Article  Google Scholar 

  • Klein RJT, Nicholls RJ (1999) Assessment of coastal vulnerability to climate change. Ambio 28:182–187

    Google Scholar 

  • Kombiadou K, Matias A, Costas S, Carrasco AR, Plomaritis TA, Ferreira Ó (2020) Barrier island resilience assessment: applying the ecological principles to geomorphological data. CATENA 194:102934

    Article  Google Scholar 

  • Kuenen PH (1950) Marine geology. Wiley, New York

    Google Scholar 

  • Kulp SA, Strauss BH (2018) CoastalDEM: a global coastal digital elevation model improved from SRTM using a neural network. Remote Sens Environ 206:231–239

    Article  Google Scholar 

  • Kulp SA, Strauss BH (2019) New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun 10:4844

    Article  Google Scholar 

  • Lagarias A, Stratigea A (2022) Coastalization patterns in the Mediterranean: a spatiotemporal analysis of coastal urban sprawl in tourism destination areas. Geojournal. https://doi.org/10.1007/s10708-022-10756-8

    Article  Google Scholar 

  • Lakhan VC (2010) Modelling the coastal system. In: Green DR (ed) Coastal zone management. Thomas Telford, London, pp 185–205

    Chapter  Google Scholar 

  • Leonardi N (2021) The barriers of Venice. Nat Geosci 14:881–882

    Article  Google Scholar 

  • Lithgow D, Martínez ML, Gallego-Fernández JB (2013) Multicriteria analysis to implement actions leading to coastal dune restoration. In: Martínez M, Gallego-Fernández J, Hesp P (eds) Restoration of coastal dunes. Springer, Berlin/Heidelberg, pp 307–321

    Chapter  Google Scholar 

  • Liu Q, Trinder JC, Turner IL (2017) Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen-Collaroy Beach, Australia. J Appl Remote Sens 11:016036

    Article  Google Scholar 

  • Liu M, Hou L, Yang Y, Zhou L, Meadows ME (2021) The case for a critical zone science approach to research on Estuarine and Coastal Wetlands in the Anthropocene. Estuaries Coasts 44:911–920

    Article  Google Scholar 

  • Luijendijk A, van Oudenhoven APE (2019) The sand motor: a nature-based response to climate change: findings and reflections of the Interdisciplinary Research Program Nature Coast. Delft University Publishers-TU Delft Library

    Google Scholar 

  • Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8:6641

    Article  Google Scholar 

  • MacManus K, Balk D, Engin H, McGranahan G, Inman R (2021) Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter. Earth Syst Sci Data 13:5747–5801

    Article  Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156:636–638

    Article  Google Scholar 

  • Maun MA (2009) The biology of coastal sand dunes. Oxford University Press, Oxford

    Book  Google Scholar 

  • Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries A, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen P, Thompson E, Watts I, Williams HM (2007) Early Human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905–908

    Article  Google Scholar 

  • Martínez M, Gallego-Fernández J, Hesp P (eds) (2013) Restoration of coastal dunes. Springer, Berlin/Heidelberg

    Google Scholar 

  • Masselink G, Lazarus ED (2019) Defining coastal resilience. Water 11:2587

    Article  Google Scholar 

  • McGill JT (1958) Map of coastal landforms of the world. Geogr Rev 48:402–405

    Article  Google Scholar 

  • McLean RF, Tsyban A (2001) Coastal zones and marine ecosystems. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation and vulnerability, 345–379. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, p 1000

    Google Scholar 

  • McMichael C, Dasgupta S, Ayeb-Karlsson S, Kelman I (2020) A review of estimating population exposure to sea-level rise and the relevance for migration. Environ Res Lett 15:123005

    Article  Google Scholar 

  • Mcowen CJ, Weatherdon LV, Van Bochove J-W, Sullivan E, Blyth S, Zockler C et al (2017) A global map of saltmarshes. Biodivers Data J 5:e11764

    Article  Google Scholar 

  • McRobie A, Spencer T, Gerritsen H (2005) The big flood: North Sea storm surge. Phil Trans R Soc A 363:1263–1270

    Article  Google Scholar 

  • McSweeney SL, Kennedy DM, Rutherfurd ID, Stout J (2017) Intermittently closed/open lakes and lagoons: their global distribution and boundary conditions. Geomorphology 292:142–152

    Article  Google Scholar 

  • Mentaschi L, Vousdoukas MI, Pekel J-F, Voukouvalas E, Feyen L (2018) Global long-term observations of coastal erosion and accretion. Sci Rep 8:12876

    Article  Google Scholar 

  • Mimura N, Nurse L, McLean RF et al (2007) Small islands. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 687–716

    Google Scholar 

  • Möller I (2019) Applying uncertain science to nature-based coastal protection: lessons from shallow wetland-dominated shores. Environ Sci 7:49

    Google Scholar 

  • Montaño J, Coco G, Antolinez JAA, Beuzen T, Bryan KR, Cagigal L, Castelle B, Davidson MA, Goldstein EB, Ibaceta R, Idier D, Ludka BC, Masoud-Ansari S, Méndez FJ, Murray AB, Plant NG, Ratcliff KM, Robinet A, Rueda A, Sénéchal N, Simmons JA, Splinter KD, Stephens S, Townend I, Vitousek S, Vos K (2020) Blind testing of shoreline evolution models. Sci Rep 10:2137

    Article  Google Scholar 

  • Morris RKA (2012) Managed realignment: a sediment management perspective. Ocean Coast Manag 65:59–66

    Article  Google Scholar 

  • Murray AB, Knaapen MAF, Tal M, Kirwan ML (2008) Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour Res 44:W11301

    Google Scholar 

  • Murray AB, Coco G, Goldstein EB (2014) Cause and effect in geomorphic systems: complex systems perspectives. Geomorphology 214:1–9

    Article  Google Scholar 

  • Murray NJ, Phinn SR, DewItt M, Ferrari R, Johnston R, Lyons MB, Clinton N, Thau D, Fuller RA (2018) The global distribution and trajectory of tidal flats. Nature 565:222–225

    Article  Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10:e0118571

    Article  Google Scholar 

  • Neumann B, Ott K, Kenchington R (2017) Strong sustainability in coastal areas: a conceptual interpretation of SDG 14. Sustain Sci 12:1019–1035

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett V, Woodroffe CD, Hay J (2008) Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustain Sci 3:89–102

    Article  Google Scholar 

  • Nicholls RJ, Woodroffe C, Burkett V (2016) Coastline degradation as an indicator of global change. In: Letcher TM (ed) Climate change. Elsevier pp 309–324

    Google Scholar 

  • Nienhuis JH, van de Wal RSW (2021) Projections of global delta land loss from sea-level rise in the 21st century. Geophys Res Lett 48:e2021GL093368

    Google Scholar 

  • Nienhuis JH, Ashton AD, Edmonds DA, Hoitink AJF, Kettner A, Rowland JC, Tornqvist TE (2020) Global-scale human impact on delta morphology has led to net land area gain. Nature 577:514–518

    Article  Google Scholar 

  • Nordstrom KF (1994) Developed coasts. In: Carter RWG, Woodroffe CD (eds) Coastal evolution: late quaternary shoreline morhpodynamics. Cambridge University Press, pp 477–509

    Google Scholar 

  • Oppenheimer M, Glavovic B, Hinkel J, van de Wal R, Magnan AK, Abd-Elgawad A, Cai R, Cifuentes-Jara M, DeConto RM, Ghosh T, Hay J, Isla F, Marzeion B, Meyssignac B, Sebesvari Z (2019) Sea level rise and implications for low lying islands, coasts and communities. In: IPCC special report on the ocean and cryosphere in a changing climate

    Google Scholar 

  • Pardo-Pascual JE, Sánchez-García E, Almonacid-Caballer J, Palomar-Vázquez JM, de los Santos EP, Fernández-Sarría A, Balaguer-Beser Á (2018) Assessing the accuracy of automatically extracted shorelines on microtidal beaches from landsat 7, landsat 8 and sentinel-2 imagery. Remote Sens 10:326

    Google Scholar 

  • Pekel J-F, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422

    Article  Google Scholar 

  • Pramanik MK, Dash P, Behal D (2021) Improving outcomes for socioeconomic variables with coastal vulnerability index under significant sea-level rise: an approach from Mumbai coasts. Environ Dev Sustain 23:13819–13853

    Article  Google Scholar 

  • Psuty NP (2008) The coastal foredune: a morphological basis for regional coastal dune development. In: Martínez ML, Psuty NP (eds) Coastal dunes. Springer, Berlin, pp 11–27

    Chapter  Google Scholar 

  • Rasmussen DJ, Kulp S, Kopp RE, Oppenheimer M, Strauss BH (2022) Popular extreme sea level metrics can better communicate impacts. Clim Change 170:30

    Article  Google Scholar 

  • Saitis G, Karkani A, Koutsopoulou E, Tsanakas K, Kawasaki S, Evelpidou N (2022) Beachrock formation mechanism using multiproxy experimental data from natural and artificial beachrocks: insights for a potential soft engineering method. J Mar Sci Eng 10:87

    Article  Google Scholar 

  • Scheffers AM, Scheffers SR, Kelletat DH (2012) The coastlines of the world with Google earth. Springer

    Book  Google Scholar 

  • Schou A (1945) Det Marine Forland, Copenhagen

    Google Scholar 

  • Sengupta D, Chen R, Meadows ME, Banerjee A (2020) Gaining or losing ground? Tracking Asia’s hunger for ‘new’ coastal land in the era of sea level rise. Sci Total Environ 732:139290

    Article  Google Scholar 

  • Shadrick JR, Rood DH, Hurst MD, Piggott MD, Hebditch BG, Seal AJ, Wilcken KM (2022) Sea-level rise will likely accelerate rock coast cliff retreat rates. Nat Commun 13:7005

    Article  Google Scholar 

  • Shepard FP (1948) Submarine geology. Harper, New York

    Google Scholar 

  • Sherlock RL (1922) Man as a geological agent: an account of his action on inanimate nature. H.F. & G. Witherby, London

    Google Scholar 

  • Sherman DJ, Bauer BO (1993) Dynamics of beach-dune systems. Prog Phys Geogr 17:413–447

    Article  Google Scholar 

  • Skilbeck CG, Heap AD, Woodroffe CD (2017) Geology and sedimentary history of modern estuaries. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, developments in paleoenvironmental research. Springer, pp 45–74

    Google Scholar 

  • Spalding M, Ravilous C, Green EP (2001) World Atlas of Coral Reefs. United Nations Environment Programme-World Conservation Monitoring Centre

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World Atlas of Mangroves. Earthscan

    Google Scholar 

  • Splinter KD, Coco G (2021) Challenges and opportunities in coastal shoreline prediction. Front Mar Sci 8:788657

    Article  Google Scholar 

  • Splinter KD, Harley MD, Turner IL (2018) Remote sensing is changing our view of the coast: insights from 40 years of monitoring at Narrabeen-Collaroy. Aust Remote Sens 10:1744

    Article  Google Scholar 

  • Steers JA (1946) The coastline of England and Wales. Cambridge University Press

    Google Scholar 

  • Stive MJF, de Schipper MA, Luijendijk AP, Aarninkhof SGJ, van Gelder-Maas C, van Thiel de Vries JSM, de Vries S, Henriquez M, Marx S, Ranasinghe R (2013) A new alternative to saving our beaches from local sea-level rise: the sand engine. J Coast Res 29:1001–1008

    Google Scholar 

  • Sturdivant EJ, Lentz EE, Thieler ER, Farris AS, Weber KM, Remsen DP, Henderson RE (2017) UAS-SfM for coastal research: geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery. Remote Sens 9:1020

    Article  Google Scholar 

  • Storms JEA, Weltje GJ, van Dijke JJ, Geel CR, Kroonenberg SB (2002) Process-response modeling of wave-dominated coastal systems: simulating evolution and stratigraphy on geological timescales. J Sediment Res 72:226–239

    Article  Google Scholar 

  • Talavera L, Del Río L, Benavente J, Barbero L, López-Ramírez J (2018) UAS as tools for rapid detection of storm-induced morphodynamic changes at Camposoto beach, SW Spain. Int J Remote Sens 39:5550–5567

    Article  Google Scholar 

  • Taddia Y, Corbau C, Zambello E, Pellegrinelli A (2019) UAVs for Structure-From-Motion coastal monitoring: a case study to assess the evolution of embryo dunes over a two-year time frame in the Po River Delta, Italy. Sensors 19:1717

    Google Scholar 

  • Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, De Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change. Nature 504:79–83

    Article  Google Scholar 

  • Thieler ER, Danforth WW (1994) Historical shoreline mapping. 2. Application of the digital shoreline mapping and analysis systems (DSMS DSAS) to shoreline change mapping in Puerto Rico. J Coast Res 10:600–620

    Google Scholar 

  • Troy CD, Cheng YT, Lin YC, Habib A (2021) Rapid Lake Michigan shoreline changes revealed by UAV LiDAR surveys. Coast Eng 170:104008

    Article  Google Scholar 

  • Turner IL, Harley MD, Almar R, Bergsma EWJ (2021) Satellite optical imagery in coastal engineering. Coast Eng 167:103919

    Article  Google Scholar 

  • UN/MAP (2017) Mediterranean quality status report. https://www.unep.org/unepmap/resources/quality-status-report-mediterranean-med-qsr-2017

  • Vafeidis AT, Nicholls RJ, McFadden L, Tol RSJ, Hinkel J, Spencer T, Grashoff P, Boot G, Klein RJT (2008) A new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24:917–924

    Article  Google Scholar 

  • Valentin H (1952) Die Küsten der Erde. J. Perthes, Gotha

    Google Scholar 

  • Valentin H (1971) Land loss at Holderness. In: Steers JA (ed) Applied coastal geomorphology. Macmillan, Basingstoke, pp 116–145

    Chapter  Google Scholar 

  • Van de Vuurst P, Escobar LE (2020) Perspective: climate change and the relocation of Indonesia’s Capital to Borneo. Front Earth Sci 8:5

    Article  Google Scholar 

  • Vitousek S, Buscombe D, Vos K, Barnard PL, Ritchie AC, Warrick JA (2023) The future of coastal monitoring through satellite remote sensing. Camb Prisms: Coast Futures 1(e10):1–18

    Google Scholar 

  • Vos K, Splinter KD, Harley MD, Simmons JA, Turner IL (2019) CoastSat: a Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ Model Softw 122:104528

    Article  Google Scholar 

  • Vos K, Harley MD, Turner IL, Splinter KD (2023) Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat Geosci 16:140–146

    Article  Google Scholar 

  • Vousdoukas MI, Ranasinghe R, Mentaschi L, Plomaritis TA, Athanasiou P, Luijendijk A et al (2020) Sandy coastlines under threat of erosion. Nat Clim Chang 10:260–263

    Article  Google Scholar 

  • Walker IJ, Davidson-Arnott RGD, Bauer BO, Hesp PA, Delgado-Fernandez I, Ollerhead J, Smyth TAG (2017) Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. Earth Sci Rev 171:220–253

    Article  Google Scholar 

  • Wang R, Colombera L, Mountney NP (2019) Geological controls on the geometry of incised-valley fills: insights from a global dataset of late-quaternary examples. Sedimentology 66:2134–2168

    Article  Google Scholar 

  • Werner BT, Mcnamara DE (2007) Dynamics of coupled human-landscape systems. Geomorphology 91:393–407

    Article  Google Scholar 

  • Wessel P, Smith WHF (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res 101:8741–8743

    Article  Google Scholar 

  • Williams AT, Rangel-Buitrago N, Pranzini E, Anfuso G (2018) The management of coastal erosion. Ocean Coast Manag 156:4–20

    Article  Google Scholar 

  • Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 361–409

    Google Scholar 

  • Worthington TA, Andradi-Brown DA, Bhargawa R, Buelow C, Bunting P, Duncan C et al (2020) Harnessing big data to support the conservationand rehabilitation of mangrove forests globally. One Earth 2:249–443

    Article  Google Scholar 

  • Wright LD, Thom BG (1977) Coastal depositional landforms: a morphodynamic approach. Prog Phys Geogr 1:412–459

    Article  Google Scholar 

  • Young AP, Carilli J (2019) Global distribution of coastal cliffs. Earth Surf Process Landf 44:1306–1316

    Article  Google Scholar 

  • Zainescu F, Anthony E, Vespremeanu-Stroe A, Besset M, Tatul F (2023) Concerns about data linking delta land gain to human action. Nature 614:E20–E25

    Article  Google Scholar 

  • Zenkovich VP (1967) Processes of coastal development. Oliver & Boyd, Edinburgh

    Google Scholar 

Download references

Acknowledgements

This review chapter is a contribution from the Commission on Coastal Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. Woodroffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woodroffe, C.D., Evelpidou, N., Delgado-Fernandez, I., Green, D.R., Karkani, A., Ciavola, P. (2023). Coastal Systems: The Dynamic Interface Between Land and Sea. In: Bański, J., Meadows, M. (eds) Research Directions, Challenges and Achievements of Modern Geography. Advances in Geographical and Environmental Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-6604-2_11

Download citation

Publish with us

Policies and ethics